

TABLE DES MATIERES

1 GENERAL	2
2 FORME DES AILETTES	2
3 CONFIGURATION DE LA TURBINE	3
4 ROTATIONS ET POSITIONS DE LA TRAPPE	3
5 XÉCUTIONS CONSTRUCTIVES DES VENTILATEURS CENTRIFUGES	4
6 POSITION DES MOTEURS	5
7 VENTILATEURS CENTRIFUGE ATEX	5
8 VENTILATEURS 60Hz	7
9 TRANSMISSION A COURROIES	8
10 JOINT D'ETANCHEITE	9
11 GARNITURES	10
12 ROULEMENTS	10
13 APPLICATIONS PARTICULIÈRES	11

1. GENERAL

Ventilateur centrifuge

Ventilateur dans lequel l'air entre par la turbine selon une direction axiale et la quitte dans une direction qui est perpendiculaire à l'axe. Réf. UNI EN ISO 13349:2009.

0.05 < Q < 120 [m3/s] 150 < Q < 450000 [m3/h] pt < 25000 [Pa] pt < 2500 [mmH2O]

2. FORME DES AILETTES

2.1. Ailettes négatives ou inversées (courbées vers l'arrière)

Il s'agit d'une turbine extrêmement efficiente, sa structure robuste permet de l'utiliser non seulement dans des systèmes de traitement de l'air, mais également pour convoyer des gaz contenant une quantité modérée de particules érosives et dans des conditions de température très élevées.

2.2. Ailettes positives (courbées vers l'avant)

La turbine à ailettes positives offre un rendement inférieur par rapport à la turbine ayant des ailettes négatives. Ce type de turbine a pour avantage de limiter la possibilité de formation d'amas de poussière dans la partie inférieure des ailettes, quand les quantités sont modérées. On utilise également cette turbine quand, en raison de problèmes liés aux coûts et à l'espace disponible, il n'est pas possible de sélectionner une ailette négative, un ventilateur à "ailette positive" (même les ailettes sirocco sont considérées comme étant positives), à égalité de taille, en effet, développe des prestations aérauliques supérieures, mais avec un recours à une puissance supérieure en pourcentage par rapport à l'augmentation des prestations elle-même.

2.3. Ailettes droites (radiales)

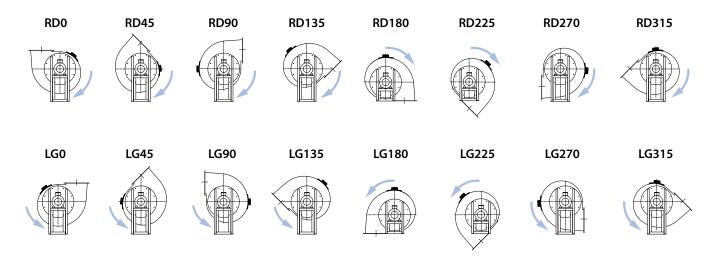
Une turbine possédant ce type d'ailette est relativement inefficiente, elle présente une consommation plus élevée par rapport à celui des ailettes renversées les plus communes. La robuste structure mécanique et la résistance à l'usure font en sorte qu'elles sont utilisées en présence de quantités élevées de particules érosives ou d'air poussiéreux avec matériaux en suspension, contenant éventuellement de la sciure, des copeaux en tout genre, des matériaux granulaires, des matériaux filamenteux.

3. CONFIGURATION DE LA ROUE

3.1. Aspiration simple ou double

Une turbine à double aspiration est formée de deux turbines à simple aspiration sous une configuration "dos à dos" (placées en opposition) sur l'arbre et avec partage d'un seul support, cette configuration permet de développer pratiquement le double du débit d'un ventilateur équipé d'une turbine à aspiration simple. Les ventilateurs à double aspiration présentent un diamètre plus limité et garantissent un débit supérieur par rapport aux ventilateurs à aspiration simple.

3.2. Monostade ou multistades


Un ventilateur multistades est formé de deux ou plusieurs turbines/ventilateurs montés en série le long du flux. Le flux d'air ou de gaz passe à travers les différentes turbines/ventilateurs par roulement, avec une augmentation conséquente de la pression. Ce modèle hautement efficient est utilisé avec de l'air propre.

4. ROTATIONS ET POSITIONS DE LA TRAPPE

Les ventilateurs centrifuges peuvent être orienté en 16 différentes positions : 8 dans le sens des aiguilles d'une montre RD et 8 dans le sens inverse LG.

Le sens de rotation est défini en regardant le ventilateur depuis le côté de la transmission (moteur).

Pour les ventilateurs orientables, les éventuelles positions de la trappe sont celles reportées dans le tableau ci-dessous. Les orientations RD, LG 180 et 225 nécessitent des adaptations au niveau de la fabrication et elles donc ne respectent pas toujours les mesures indiquées au catalogue.

Pour les ventilateurs qui ne sont pas orientables, la trappe est réalisée de manière indicative à une hauteur de 1,20 m du sol, du côté opposé à la bouche de refoulement, de manière compatible avec les exigences en matière de construction.

5. EXÉCUTIONS CONSTRUCTIVES DES VENTILATEURS CENTRIFUGES

5.1. EXECUTION 1

Turbine embrevée en saillie sur arbre de transmission. Paliers montés sur support, en-dehors du flux de l'air. Température maximum de l'air 60°C sans ventilateur de refroidissement; 150°C avec ventilateur de refroidissement.

5.2. EXECUTION 4

Accouplement direct. Turbine monté directement sur l'arbre du moteur qui est soutenu par la structure de support. Température maximum de l'air 60°C, entre 60 et 150°C avec ventilateur de refroidissement, au-dessus de 150°C en exécution spéciale avec isolation thermique entre la volute et moteur.

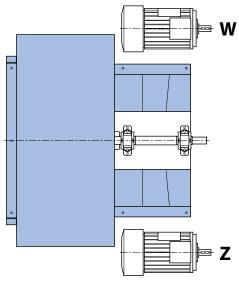
5.3. EXECUTION 5

Accouplement direct avec moteur bridé sur un côté du ventilateur. Limites de température comme pour exécution 4.

5.4. EXECUTION 8

Comme exécution 1, accouplement arbre-moteur dans l'axe, par le biais d'un joint élastique. Limites de température comme pour exécution 1.

Analogue à l'exécution 1 pour accouplement par courroies, avec le moteur soutenu sur le côté de la structure de support. Limites de température comme pour exécution 1.


5.6. EXECUTION 12

Par accouplement par courroies comme pour l'exécution 1, avec moteur et ventilateur montés sur le même chassis. Limites de température comme pour exécution 1.

6. POSITION DES MOTEURS

La position des moteurs est indiquée par W quand elle se situe à droite de l'arbre de transmission, par Z quand elle se situe à gauche de l'arbre de transmission.

Positionnement standard des moteurs pour ventilateurs à transmission en fonction de l'orientation.

RD0 POS.W RD45 POS.Z RD90 POS.Z RD135 POS.Z RD180 POS.Z RD225 POS.W RD270 POS.W

LG0 POS.Z

LG45 POS.W

LG90 POS.W

LG135 POS.W LG180 POS.W LG225 POS.Z LG270 POS.Z

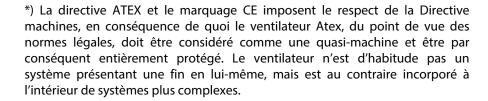
LG315 POS.Z

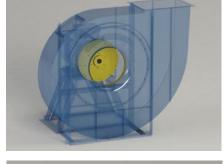
7. VENTILATEURS CENTRIFUGES ATEX

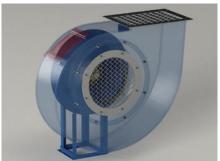
Ventilateurs à attaque direct, exécutions 4 et 5

Classe thermique	Température ambiante	Température de travail
T135°C (T4)	-20 ÷ +40°C	-20 ÷ +40°C
T200°C (T3)	-20 ÷ +40°C	-20 ÷ +105°C
T300°C (T2)	-20 ÷ +40°C	-20 ÷ +150°C

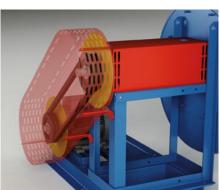
Ventilateurs à transmission, exécutions 1, 8, 9, 12

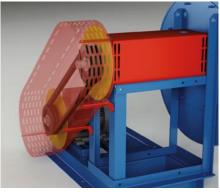

Classe thermique	Température ambiante	Température de travail
T200°C (T3)	-20 ÷ +40°C	-20 ÷ +55°C
T300°C (T2)	-20 ÷ +40°C	-20 ÷ +135°C




7.1. VENTILATEURS 3GD

Il faut nécessairement disposer de:


- trappe d'inspection afin de contrôler qu'aucun dépôt éventuel de poussières ne soit présent à l'intérieur de la volute et que les espaces nécessaires soient conservés entre les éléments en mouvement et les éléments fixes;
- un report en cuivre sur bouche d'aspiration et une baque d'usure entre la volute et la turbine du côté de la transmission;
- un joint d'étanchéité si le moteur est B3 (si c'est un B5, le raccord par bride suffit pour garantir l'étanchéité);
- des garnitures appropriées en mesure d'éviter une fuite excessive des fluides par les bridages;
- grilles de protection sur l'aspiration et sur le refoulement*;
- au-delà de 11 kW, le caisson du ventilateur doit être soudé en continu;
- moteur répondant à la zone d'utilisation.



Une fois qu'on a procédé à une analyse soigneuse des risques, au cas où la sécurité serait garantie par les systèmes eux-mêmes, l'utilisateur peut retirer uniquement les protections qui apparaissent en excédent.

Ces protections doivent dans tous les cas être conservées comme des accessoires du ventilateur, en prévision d'un éventuel changement de destination de l'utilisation de celui-ci.

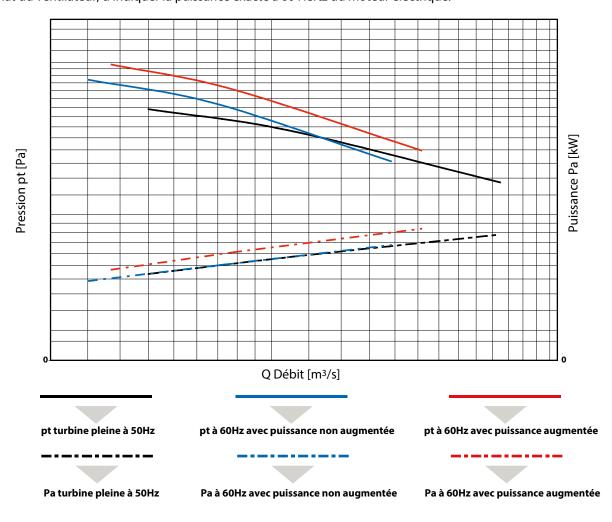
En plus des points précédents, les ventilateurs à transmission doivent avoir:

- des courroies antistatiques et ne permettant pas la propagation;
- un carter avec des bagues d'usure en cuivre;
- monoblocs appartenant à une version adéquate.

7.2. VENTILATEURS 2GD

On applique exactement ce qui a été dit pour le 3GD; de plus, la caisse doit toujours être soudée et le moteur doit répondre à la zone d'utilisation

Les ventilateurs à renvoi peuvent être certifiés de manière singulière (exécution 1) ou en tant que "ensemble composants" (exécutions 8, 9, 12).



8. VENTILATEURS 60Hz

Afin de garantir un dimensionnement correct des turbines destinées à travailler à 60 Hertz, il est important d'indiquer sur la commande, non seulement la puissance nominale et la fréquence d'utilisation des moteurs mais également de spécifier si cette puissance nominale se réfère à la même fréquence et/ou tension d'utilisation ou bien à une autre fréquence et/ou tension. Les moteurs normalement utilisés au sein de la Communauté européenne sont classés selon les normes en vigueur et sont dénommés Eurotension. Cette norme prévoit pour les moteurs asynchrones triphasés un double type de connexion: en étoile ou en triangle.

Normalement, nous utilisons des moteurs 230/400 50Hz jusqu'à une puissance de 4kW incluse, tandis qu'à partir de 5.5kW, nous utilisons des moteurs 400/690 50Hz. Quand il est nécessaire de fournir des ventilateurs pour des marchés où la fréquence d'alimentation est de 60 Hz, on peut choisir entre les deux options suivantes:

- 1) tensions de 265 \pm 5% ou 460 \pm 5% Volts. Dans un tel cas, on utilise des moteurs qui se comportent comme suit : Δ 230 / Δ 400 50Hz devient Δ 265 / Δ 460 at 60Hz Δ 400/ Δ 690 50Hz devient Δ 460 à 60Hz
 - A 60Hz et 265/460 Volts ces motuers fournissent une puissance plus élevée, et les turbines sont donc réduites pour compenser cette augmentation ;
- 2) tensions non compatibles avec les moteurs. Dans un tel cas, il est extrêmement important, au moment de l'achat du ventilateur, d'indiquer la puissance exacte à 60 Hertz du moteur électrique.

Un ventilateur avec une turbine dimensionnée en tenant compte de l'augmentation de puissance à 60 Hz présente une courbe (courbe rouge) qui couvre entièrement le champ de fonctionnement du ventilateur standard à 50 Hertz (courbe noire). Un ventilateur avec turbine à 60 Hz dimensionné à la puissance nominale présente une courbe bleue qui entre en intersection avec la turbine fonctionnant à 50 Hz (courbe noire) au point de rendement maximum. N.B. On déconseille l'utilisation de moteurs à puissance non augmentée.

Les ventilateurs mus par le biais d'inverseurs ou de transmission à courroies ne sont pas soumis à des exigences de dimensionnement spécifi que de leur turbine.

9. TRANSMISSIONS PAR COURROIES

Nous utilisons toujours des courroies trapézoïdales des meilleures marques. Chaque transmission est calculée en utilisant un facteur de service minimum équivalant à 1,5, qui représente des conditions de services sévères (couple variable avec démarrages fréquents, en fonction 24 heures sur 24). Des conditions encore plus sévères ou particulières doivent faire l'objet d'un accord avec notre service technique.

N.B. On rappelle que la garantie concernant le bon fonctionnement de la transmission n'est valable que si la transmission en question est dimensionnée, entièrement fournie, installée et testée par le fabricant, sous peine d'annulation de toute forme de recours de la part du client. La puissance, figurant dans les courbes caractéristiques des ventilateurs, ne tient pas compte des pertes dues à la transmission.

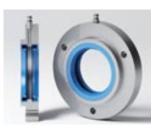
Les rendements de transmission selon la ISO12759 sont:

- 75% pour P<1kW;
- 83% pour 1kW<P<5kW;
- 90% pour P>5kW.

10. JOINT D'ÉTANCHÉITÉ

JOINT D'ÉTANCHÉITÉ SIMPLE À LÈVRES

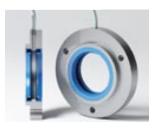
TEN- N


Pour les ventilateurs standards, nous utilisons d'habitude un joint d'étanchéité avec une simple bague en NBR, pour des milieux ambiants peu poussiéreux et des températures inférieures à 80°C.

TEN-V

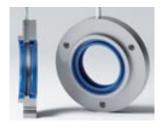
Dans certain cas spécifiques, la bague d'étanchéité peut être en Viton, pour des températures comprises entre -18°C et +220°C et une vitesse maximum de fonctionnement de 40 m/s. Le Viton garantit en outre une plus grande résistance mécanique, par rapport à d'autres matériaux, et est susceptible d'être utilisé dans des milieux ambiants corrosifs, à condition qu'ils soient exempts d'esters ou d'éthers.

TEN-S


L'utilisation de la Silicone est par contre conseillée pour des températures de travail extrèmes : entre -50°C et +170°C, ou en présence d'esters ou d'éthers dans l'environnement de travail. Il présente une vitesse de fonctionnement maximum de 2 5m/s et en raison de sa constitution possède un coefficient de friction extrêmement limité. Les bagues en silicone sont très délicates et présentent des caractéristiques mécaniques moins bonnes que celles du NBR et du Viton.

JOINT DOUBLE AVEC ACCUMULATION DE GRAISSE À L'INTÉRIEUR

Une éventuelle application pour les milieux ambiants très poussiéreux consiste en un recours à une double bague d'étanchéité avec accumulation de graisse entre les deux bagues ; dans un tel cas, les températures de travail sont établies en fonction du type de graisse auquel on a recours. Il existe une prédisposition pour un graisseur. Dans ce cas également, il est possible de choisir le matériau des bagues d'étanchéité en NBR, en Viton ou en Silicone.


T2G -... (N-V-S)

DOUBLE JOINT D'ÉTANCHÉITÉ AVEC FLUXAGE

Il est possible de mettre sous pression la cavité entre les deux bagues (maximum 0,4 bars). C'est fortement déconseillé en présence de fluides contenant des matériaux qui pourraient se déposer à l'intérieur du tuyau de reprise. Dans ce cas également, il est possible de choisir le matériau des bagues d'étanchéité en NBR, en Viton ou en Silicone.

T2F -... (N - V - S)

DOUBLE JOINT AVEC PRÉDISPOSITION POUR LA REPRISE EN ASPIRATION

Il est possible de mettre en dépression la cavité entre les bagues en la reliant avec un tuyau à l'aspiration du ventilateur. C'est fortement déconseillé en présence de fluides contenant des matériaux qui pourraient se déposer à l'intérieur du tuyau de reprise. Dans ce cas également, il est possible de choisir le matériau des bagues d'étanchéité en NBR, en Viton ou en Silicone.

T2R - ... (N - V - S)

TBAD

JOINT D'ÉTANCHÉITÉ EN ÉTOUPE

Le recours au joint d'étanchéité en étoupe est conseillé pour des températures de travail très élevées, comprises entre 200 et 500°C, ou bien quand, à cause de la présence d'éléments particulièrement corrosifs, il ne serait pas possible d'avoir recours à d'autres types de joint d'étanchéité. Le joint d'étanchéité en étoupe est composé de trois éléments: la bague en tresse de graphite (normalement, on en utilise deux), un corps dans lequel celle-ci est logée et la bride presse-étoupe.

N.B. Il est possible d'utiliser ce joint d'étanchéité avec un moteur d'une grandeur supérieure à 80.

PARE-POUSSIÈRE ÉCONOMIQUE À DISQUE

Il s'agit d'un simple disque en caoutchouc, bloqué par une bride contre le dos du ventilateur, qui frotte sur l'arbre. On ne peut l'utiliser que pour les ventilateurs de petite taille de la série: ZA-ZB-ZC-ZM.

TEG

11. GASKETS

Les garnitures standards utilisées peuvent être du type:

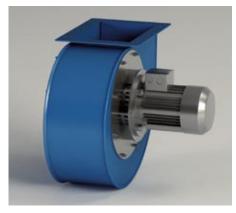
- Ventilateurs standards : mousse EPDM, résistant à une température constante de 80°C ou pour des pics pouvant atteindre 100°C
- Ventilateurs Atex : mousse de silicone, résistant à une température constante de 200°C ou pour des pics pouvant atteindre 260°C;
- Ventilateurs gaz chauds: tresse en fibre de verre pour hautes températures (maximum 600°C).

Des conditions différentes doivent faire l'objet d'un accord avec Formula Air.

12. ROULEMENTS

Dans les configurations standards, nous avonsa recours à des roulements des meilleures marques. Les monoblocs possèdent des bagues d'étanchéité en NBR et en Viton pour les versions gaz chauds. Les supports singuliers possèdent des joints d'étanchéité à double lèvre sur les deux unités, et des joints d'étanchéité en labyrinthe uniquement sur l'unité du côté turbine dans la version gaz chauds.

La durée de vie utile des roulements est comprise entre 20000 et 40000 heures de fonctionnement, la durée effective dépendant du type d'application, du milieu ambiant et de la température de travail.

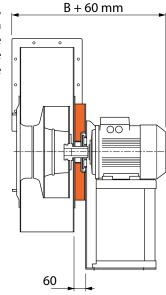


13. 3BB>;53F;A@EB3DF;5G>;ÏD7E

13.1. 9SI UZSgVe

Bagd Wros` ebad VW/g[VW SgŽVW VW(" »5ł a` Sbb (cgWsg _ akVg VWS fgdT[Wg` WbVf[fWZ e (LWWW WW kla [V[eeW_ Wf Va` f 'S bdeeW UW WLZS` YWbSe WeV[We[a` e VW sffSLZ V e Vg e i YWå f Wd WbSd Sbbad å UW We cg [XYgdW f VS` e We fST Wsgj VW W La_ TdV_ W fe VWeV [edW fe hW f ['SfWgde \cdot [bagd We hW f ['SfWgde V [dW fe \cdot [cose] a z Bagd We hW f ['SfWgde V [dW fe | CSGf W w VS` f SagfW S LafWX Y gds` f VS` e Wrst Wsg U ZV Weage å 'S LafW4 VW W La_ TdV_ W f Vg_ afW d va [dV [Wea e V W W La_ TdV_ W f Vg hW f SfWgds implefix

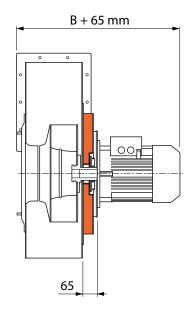
FS[^W	<a[f<="" th=""><th>9SI UZSgVe</th><th>⊲[feŁ9Sl UZSgVe</th></a[>	9SI UZSgVe	⊲[feŁ9Sl UZSgVe
63	`a` XS[eST^W	`a` XS [eST W	`a` XS[eST^W
71	20mm	30mm	`a` XS[eST W
80	20mm	40mm	60mm
90	20mm	40mm	60mm
100	20mm	40mm	60mm
112	20mm	40mm	60mm
132	20mm	40mm	60mm
160	20mm	40mm	60mm
180	60mm	60mm	60mm
200	60mm	60mm	60mm
225	60mm	60mm	60mm
250	60mm	60mm	60mm
280	60mm	60mm	60mm
315 *	-	-	-


 $ffBagd'SYdS`VVvgd'\#' + VveV[_We[a`eVWSUZS[eWUZS`YWfWPWeSgee[-Wbb'geVWW]Ua_TdvV_WfVg_afVvgd'a`Ua`eW[PWWa`UVW_S`VWgVe_Vvegd'Ne'vWeV|WUa_TdvV_Wfz$

13.2. 6[ecgWL6/ad/XgYé

On l'utilise pour des ventilateurs directement couplés* (exécution 4 et 5) et à transmission, qui transportent des fluides à des températures comprises entre 150÷300°C. La construction prévoit la présence d'un disque, présentant un interstice rempli de laine minérale, interposé entre le moteur et le fluide. Sur ce disque est également prévu le logement pour l'hélice de refroidissement. L'application du disque calorifugé peut également être prévue afin de protéger le monobloc sur des ventilateurs à renvoi également.

^{*} Ceci n'est pas réalisable pour la grandeur 63, qui est donc exclue.



Les encombrements augmentent sur la cote "B" de ~60 mm pour les ventilateurs Exec. 4, 1, 9, 12, 8 et 65 mm pour les ventilateurs Exec. 5. De plus, on procède au calorifugeage de la volute dans son ensemble et il est vivement déconseillé de recourir à des ventilateurs Exec. 4 et 5.

13.3. Volute calorifugé*

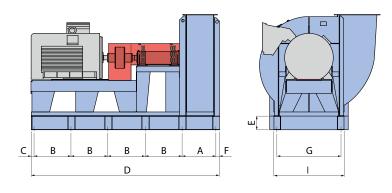
Il est possible de revêtir la volute dans son ensemble avec de la laine de roche, pour réduire la température superficielle du ventilateur ou même pour diminuer le bruit propagé. Le panneau semi-rigide en laine de roche biosoluble (conforme à la note Q de la directive 97/69/EC) est constitué de laine minérale obtenue par la fusion et le filage de roches naturelles. Cette configuration est conseillée pour des températures de travail dépassant 300° C et peut être réalisée avec différentes épaisseurs de laine de roche: 60 mm est l'épaisseur de laine dans les calorifugeages standards. D'autres épaisseurs sont susceptibles d'être réalisées: 80 mm – 100 mm – 120 mm.

* La trappe d'accès dans la volute calorifugé est considérée comme un accessoire optionnel.

13.4. Exécution 8

Cette application est vivement conseillée dans le cas de conditions de travail sévères, quand on ne veut pas utiliser une transmission par courroie et qu'on veut en même temps utiliser une connexion moteur-turbine directe. Cette version facilite les interventions sur le moteur électrique, sans l'entretien qui est nécessaire avec des transmissions par courroie. La modification des tours doit se faire à l'aide d'un convertisseur de fréquence.

Le moteur en position coaxiale par rapport à l'unité de support des roulements (MZ ou SN) est relié par un joint élastique. Il est semblable à l'Exécution 1, mais avec une extension de la base/siège pour soutenir le moteur. Le choix du joint se fait en calculant le couple nominal du moteur:


où P est la puissance en kW et n est le nombre de tours par minute. La puissance, figurant dans les courbes caractéristiques des ventilateurs, ne tient pas compte de la transmission: selon la ISO 5801 le rendement de la transmission par joint est de 97%.

Dans les tableaux qui suivent sont fournies les dimensions d'encombrement, ces tableaux ne tiennent pas compte des caractéristiques aérauliques du ventilateur. Les cotes qui dépendent des dimensions d'encombrement du moteur électrique sont indicatives parce que liées aux dimensions du moteur lui-même.

$$c = \frac{P \cdot 9550}{n} [Nm]$$

	Basse pression																	Haı	ute į	pression					
Taille	oteu	nioį «							Rm	- GF	RL-	RH	G	R							V	/I	V	m	
Tai	Taille moteur	Type de joint	BxN°	С	E	F	G	ı	A	D	A	D	A	D	BxN°	С	E	F	G	ı	Α	D	А	D	
	G90		430 x2	28	120	23	355	400	312	1223	371	1282	270	1181	415 x2	48	120	15	355	400	222	1115	191	1084	
0	G100	050 Ol [*] 035	450 x2	29	120	23	355	400	312	1264	371	1323	270	1222	435 x2	49	120	15	355	400	222	1156	191	1125	
400	G112	GET0050 GEP0050l [*] 035	460 x2	30	120	23	355	400	312	1285	371	1344	270	1243	445 x2	50	120	15	355	400	222	1177	191	1146	
	G132	Ū	490 x2	30	120	23	355	400	312	1345	371	1404	270	1303	475 x2	50	120	15	355	400	222	1237	191	1206	
	G100		445 x2	39	120	23	355	400	340	1292	407	1359	290	1242	440 x2	49	120	15	355	400	240	1184	206	1150	
0	G112	050 01 [°] 035	455 x2	40	120	23	355	400	340	1313	407	1380	290	1263	450 x2	50	120	15	355	400	240	1205	206	1171	
450	G132	GET0050 GEP0050l [*] 035	485 x2	40	120	23	355	400	340	1373	407	1440	290	1323	480 x2	50	120	15	355	400	240	1265	206	1231	
	G160	G	545 x2	55	120	23	395	440	340	1508	407	1575	290	1458	550 x2	45	120	15	395	440	240	1400	206	1366	
	G90	10	480 x2	33	140	23	364	418	373	1389	446	1462	314	1330	425 x2	38	120	18	355	400	264	1170	227	1133	
0	G112	GET0050 GEP0050l [*] 035	505 x2	45	140	23	364	418	373	1451	446	1524	314	1392	455 x2	40	120	18	355	400	264	1232	227	1195	
200	G132		535 x2	45	140	23	364	418	373	1511	446	1584	314	1452	485 x2	40	120	18	355	400	264	1292	227	1255	
	G160		605 x2	40	140	23	395	440	373	1646	446	1719	314	1587	550 x2	45	120	18	395	440	264	1427	227	1390	
	G90		480 x2	44	160	23	632	692	407	1434	489	1516	341	1368	475 x2	43	160	23	364	418	289	1305	250	1266	
	G100		500 x2	45	160	23	632	692	407	1475	489	1557	341	1409	495 x2	44	160	23	364	418	289	1346	250	1307	
260	G112	3200 501″05	510 x2	46	160	23	632	692	407	1496	489	1578	341	1430	505 x2	45	160	23	364	418	289	1367	250	1328	
26	G132	GET0200 GEP0150l [*] 050	540 x2	46	160	23	632	692	407	1556	489	1638	341	1490	535 x2	45	160	23	364	418	289	1427	250	1388	
	G160	Ū	610 x2	41	160	23	632	692	407	1691	489	1773	341	1625	600 x2	50	160	23	395	440	289	1562	250	1523	
	G180		650 x2	42	160	23	632	692	407	1772	489	1854	341	1706	640 x2	51	160	23	434	488	289	1643	250	1604	
	G100		500 x2	45	160	23	702	762	445	1513	537	1605	372	1440	495 x2	44	160	23	364	418	314	1371	270	1327	
	G112	300	510 x2	46	160	23	702	762	445	1534	537	1626	372	1461	505 x2	45	160	23	364	418	314	1392	270	1348	
630	G132	ET0200 GET 0300 GEP0150l'050 GEP0500l'070	540 x2	46	160	23	702	762	445	1594	537	1686	372	1521	535 x2	45	160	23	364	418	314	1452	270	1408	
9	G160	GET0200 GEP01! GEP05	605 x2	51	160	23	702	762	445	1729	537	1821	372	1656	605 x2	40	160	23	395	440	314	1587	270	1543	
	G180	e e	645 x2	52	160	23	702	762	445	1810	537	1902	372	1737	645 x2	41	160	23	434	488	314	1668	270	1624	
	G200		700 x2	50	160	23	702	762	445	1918	537	2010	372	1845	700 x2	39	160	23	506	568	314	1776	270	1732	

Continue

	Basse pression																	Ha	ute į	ores	sion				
<u>=</u>	oteur	joint							Rm	- GF	RL -	RH	G	R							V	/I	v	m	
Taille	Taille moteur	Type de joint	BxN°	С	Е	F	G	1	A	D	А	D	A	D	BxN°	С	Ε	F	G	ı	Α	D	Α	D	
	G112		365 x3	51	180	27	772	826	497	1670	600	1773	415	1588	365 x3	51	180	20	526	590	357	1523	306	1472	
	G132	OI"050)	385 x3	51	180	27	772	826	497	1730	600	1833	415	1648	385 x3	51	180	20	526	590	357	1583	306	1532	
710	G160	GET0200 GEP0150I ⁻ 050 GEP0500I ⁻ 070	430 x3	51	180	27	772	826	497	1865	600	1968	415	1783	430 x3	51	180	20	526	590	357	1718	306	1667	
7	G180	:00 GI	455 x3	57	180	27	772	826	497	1946	600	2049	415	1864	455 x3	57	180	20	526	590	357	1799	306	1748	
	G200	GET02	490 x3	60	180	27	772	826	497	2054	600	2157	415	1972	490 x3	60	180	20	526	590	357	1907	306	1856	
	G225	_	495 x3	57	180	27	772	826	497	2066	600	2169	415	1984	495 x3	57	180	20	526	590	357	1919	306	1868	
	G132		385 x3	60	180	47	862	926	546	1808	662	1924	454	1716	385 x3	60	180	30	526	590	378	1623	319	1564	
	G160	20	430 x3	60	180	47	862	926	546	1943	663	2060	455	1852	430 x3	60	180	30	526	590	378	1758	319	1699	
	G180	GEP0150l'50 500l'070	460 x3	51	180	47	862	926	546	2024	664	2142	456	1934	460 x3	51	180	30	526	590	378	1839	319	1780	
800	G200		495 x3	54	180	47	862	926	546	2132	665	2251	457	2043	495 x3	54	180	30	526	590	378	1947	319	1888	
	G225	GET0300 GEP0	500 x3	51	180	47	862	926	546	2144	666	2264	458	2056	500 x3	51	180	30	526	590	378	1959	319	1900	
	G250	ថ	555 x3	54	180	47	862	926	549	2315	671	2437	463	2229	555 x3	54	180	30	526	590	381	2130	322	2071	
	G280		555 x3	57	180	47	862	926	546	2315	668	2437	460	2229	555 x3	57	180	30	526	590	378	2130	319	2071	
	G160		430 x3	60	180	47	962	1026	600	1997	731	2128	497	1894	475 x3	51	200	45	663	735	412	1933	346	1867	
	G180	GET0300 GEP0150I-050 GEP0500I-070 GEP1000-090	460 x3	51	180	47	962	1026	600	2078	731	2209	497	1975	500 x3	57	200	45	663	735	412	2014	346	1948	
006	G200	EP015 001-07 000-09	495 x3	54	180	47	962	1026	600	2186	731	2317	497	2083	535 x3	60	200	45	663	735	412	2122	346	2056	
ō	G225	300 G GEP05 GEP10	500 x3	51	180	47	962	1026	600	2198	731	2329	497	2095	540 x3	57	200	45	663	735	412	2134	346	2068	
	G280	GETO	555 x3	57	180	47	962	1026	600	2369	731	2500	497	2266	595 x3	63	200	45	663	735	412	2305	346	2239	
	G315		655 x3	59	180	47	962	1026	600	2671	731	2802	497	2568	700 x3	50	200	45	663	735	412	2607	346	2541	
	G160		465 x3	52	200	67	1056	1128	657	2171	803	2317	541	2055	500x3	48	200	50	850	960	511	2109	438	2036	
	G180)OI-070	490 x3	58	200	67	1056	1128	657	2252	803	2398	541	2136	525 x3	54	200	50	850	960	511	2190	438	2117	
0	G200	EP050	525 x3	61	200	67	1056	1128	657	2360	803	2506	541	2244	560 x3	57	200	50	850	960	511	2298	438	2225	
1000	G225	501-050 GEP05001-070 GEP1000-090	530 x3	58	200	67	1056	1128	657	2372	803	2518	541	2256	565 x3	54	200	50	850	960	511	2310	438	2237	
	G250	0150l- GE	585 x3	61	200	67	1056	1128	660	2543	806	2689	544	2427	620 x3	57	200	50	850	960	514	2481	441	2408	
	G280	GEP01	585 x3	64	200	67	1056	1128	657	2543	803	2689	541	2427	620 x3	60	200	50	850	960	511	2481	438	2408	
	G315		685 x3	66	200	67	1056	1128	657	2845	803	2991	541	2729	720 x3	62	200	50	850	960	511	2783	438	2710	
	G180	060,	395 x4	71	220	55	1178	1268	763	2469	926	2632	632	2338	395 x3	51	220	55	1178	1288	549	2235	467	2153	
	G200	1000° 05	425 x4	59	220	55	1178	1268	764	2578	927	2741	633	2447	420 x3	59	220	55	1178	1288	549	2343	467	2261	
1120	G225	GEP05001'070 GEP1000'090 GEP1500'105	425 x4	71	220	55	1178	1268	765	2591	928	2754	634	2460	425 x3	51	220	55	1178	1288	549	2355	467	2273	
_	G250	001 ⁷ 07	470 x4	59	220	55	1178	1268	770	2764	933	2927	639	2633	465 x3	59	220	55	1178	1288	552	2526	470	2444	
	G280	3EP05(470 x4	62	220	55	1178	1268	767	2764	930	2927	636	2633	465 x3	62	220	55	1178	1288	549	2526	467	2444	
	G315	ច	GEI	545 x4	64	220	55	1178	1268	768	3067	931	3230	637	2936	540 x3	64	220	55	1178	1288	549	2828	467	2746

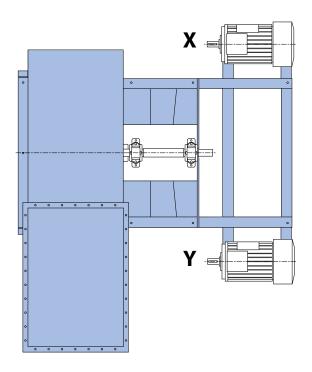
7A T07 FM 2018 V 1 0 F

Continue

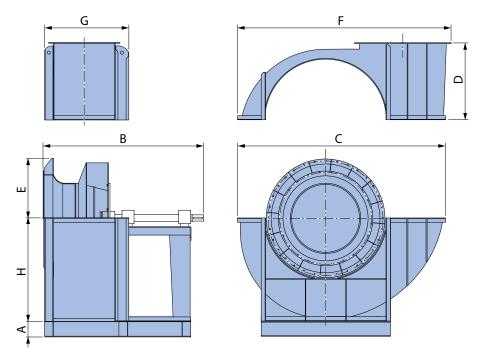
	Basse pression																	Ha	ute p	ores	sion			
Taille	oteur	e joint							Rm	- GF	RL -	RH	G	R								/1	V	m
Taj	Taille moteur	Type de joint	BxN°	С	Е	F	G	1	Α	D	А	D	Α	D	BxN°	С	Е	F	G	1	Α	D	Α	D
	G200	0.090	425x4	59	220	55	1310	1400	840	2654	1023	2837	694	2508	415x4	59	220	55	1310	1400	618	2392	526	2300
_	G225	:P1000	430 x4	51	220	55	1310	1400	840	2666	1023	2849	694	2520	420x4	51	220	55	1310	1400	618	2404	526	2312
1250	G250	70 GE	470 x4	59	220	55	1310	1400	847	2841	1026	3020	697	2691	460x4	59	220	55	1310	1400	621	2575	529	2483
Ψ.	G280	GEP05001'070 GEP1000'090 GEP1500'105	470 x4	62	220	55	1310	1400	844	2841	1023	3020	694	2691	460x4	62	220	55	1310	1400	618	2575	526	2483
	G315	GEPO	545 x4	64	220	55	1310	1400	840	3139	1023	3322	694	2993	535x4	64	220	55	1310	1400	618	2877	526	2785
	G250)70 190 05 140	485 x4	56	220	85	1450	1560	949	3030	1155	3236	786	2867	480x4	54	220	65	1450	1730	685	2724	582	2621
1400	G280	GEP05001'070 GEP1000'090 GEP1500'105 GEP4000N'140	485 x4	59	220	85	1450	1560	946	3030	1152	3236	783	2867	480x4	57	220	65	1450	1730	682	2724	579	2621
_	G315	GEPC GEP GEP GEP4	560 x4	61	220	85	1450	1560	946	3332	1152	3538	783	3169	555x4	59	220	65	1450	1730	682	3026	579	2923
0	G315	0~105 N~140	610 x4	66	220	75	1640	1760	1073	3654	1305	3886	890	3471	610x4	66	220	65	1640	1760	754	3325	638	3209
1600	G355	GEP1500"105 GEP4000N"140	715 x4	74	220	75	1640	1760	1073	4082	1305	4314	890	3899	715x4	74	220	65	1640	1760	754	3753	638	3637
0	G315	L"140 L"165	500 x5	71	250	65	1830	1950	1192	3828	1452	4088	986	3622	500 x5	71	250	65	1830	1950	823	3459	692	3328
1800	G355	GEP4000N"140 GEP6000N"165	585 x5	74	250	65	1830	1950	1192	4256	1452	4516	986	4050	590 x5	49	250	65	1830	1950	823	3887	692	3756
	G400	99	610 x5	84	250	65	1830	1950	1192	4391	1452	4651	986	4185	615 x5	59	250	65	1830	1950	823	4022	692	3891
•	G315	"140 "165	500 x5	71	250	85	2030	2150	1315	3971	1606	4262	1083	3739	500 x5	71	250	85	2030	2150	905	3561	759	3415
2000	G355	GEP4000N″140 GEP6000N″165	585 x5	74	250	85	2030	2150	1315	4399	1606	4690	1083	4167	585 x5	74	250	85	2030	2150	905	3989	759	3843
, ,	G400	GEP.	615 x5	59	250	85	2030	2150	1315	4534	1606	4825	1083	4302	615 x5	59	250	85	2030	2150	905	4124	759	3978

13.4.1. Joint élastiques

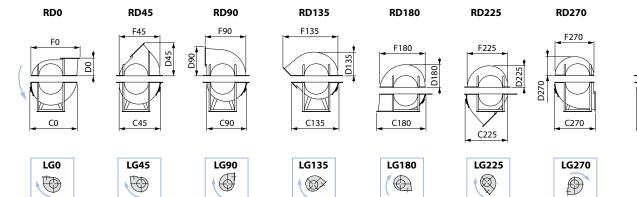
Modèle	Type joint et accouplement		Couple maxi joint	Couple nominal démarrages doux	Couple nominal démarrages directs	Trou maxi	
				Nm		mm	
GET0050			150	64		42	
GET0200	Joint en étoile/chevilles		540	240)	48	
GET0300			860)	60		
GEP 0020I-025			56	37	25	28	
GEP 0050I-035			113	75	50	42	
GEP 0150I-050			420	280	180	60	
GEP 0500I-070			1170	780	520	90	
GEP 1000N-090	Joint avec collier	2	2170	1440	960	85	
GEP 1000I-090	en caoutchouc		2170	1440	960	100	
GEP 1500N-105		3130 2080 1		1390	100		
GEP 1500I-105			3130	2080	1390	125	
GEP 4000N-140			8500	5650	3770	140	
GEP 6000N-165		12200 8100 5450					
GEP 8000N-200			25520	17000	11340	140	


13.5. Exécution 11

La volute est auto-soutenu, la turbine est embrevée entre les roulements, les roulements sont placés, l'un, à l'intérieur du conduit d'aspiration et, l'autre, à l'extérieur de la volute, la transmission du mouvement se fait par courroies.


13.6. Moteur en position X, Y

En cas d'exigences d'encombrement particulières, il est possible de réaliser des ventilateurs à transmission avec le moteur en position x ou y (voir dessin).

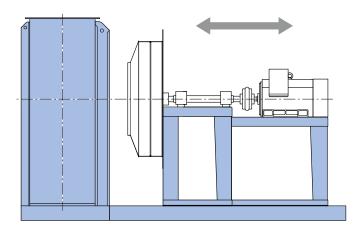


13.7. Volutes réalisées en deux moitiés

RD315

C315

LG315



13.7.1. TABLEAU VENTILATEURS EN DEUX MOITIÉS (de 1000 à 2000)

Taille	Туре	4	В	C 0	C 45	C 90	C 135	C 180	C 225	C 270	C315	D 0	D 45	D 90	D 135	D 180	D 225	D 270	D 315	ш	F 0	F 45	F 90	F 135	F 180	F 225	F 270	F315	ט
	GF-RM-ZM	200	1565	1974	1795	1726	1956	2023	1795	1726	2286	710	1330	1171	586	946	206	813	719	554	2023	1795	1726	2286	1974	1795	1726	1956	770
1000	GR-ZC	200	1450	1974	1795	1726	2002	2012	1795	1726	2274	710	1323	1160	985	946	200	813	719	554	2012	1795	1726	2274	1974	1795	1726	2007	654
_	RL-RH-CA	200	1710	1974	1795	1726	1939	2024	1795	1726	2287	710	1332	1172	985	946	206	813	719	554	2024	1795	1726	2287	1974	1795	1726	1939	916
	GF-RM-ZM	220	1780	2220	2005	1925	2255 1	2271 2	2005	1925	2555 2	800	1492	1309	1101	1055	1010	903	962	625	2271 2	2005	1925	2555 2	2220	2005	1925	2255 1	838
1120	GR-ZC	220	1649	2220	2005	1925	2261	2250	2005	1925	2554	800	1485	1300	11011	1055	1010	903	962	625	2250 2	2005	1925	2554	2220	2005	1925	2261	707
-	RL-RH	220	1941	2220 2	2005	1925	2206 2	2268 2	2005	1925	2568 2	800	1500	1318	1101	1055	1010	903	962	625	2268 2	2005	1925	2568 2	2220 2	2005	1925	2206 2	1001
	GF-RM-ZM	220	1855 1	2485	2246	2154	2461	2541	2246	2144	2864	006	1672	1464	1240	1184	1135	1017	868	069	2541	2246	2144	2864	2485	2246	2154	2461	915
1250	GR-ZC	220	1710	2485	2246	2154	2511	2541	2246	2144	2858	006	1672	1464	1240	1184	1135	1017	868	069	2541	2246	2144	2858	2485	2246	2154	2511	692
_	RL-RH	220	2038	2485	2246	2154	2511	2561	2246	2144	2867	006	1679	1474	1140	138	1135	1017	868	069	2561	2246	2144	2867	2485	2246	2154	2511	1098
	GF-RM	220	2050	2756	2476	2370	2725	2806	2476	2365	3168	1000	1864	1635	1365	1295	1243	1101	886	770	2806	2476	2365	3168	2756	2476	2370	2725	1131
	GR	220	1887	2756	2476	2370	2725	2796	2476	2365	3164	1000	1857	1635	1365	1295	1243	1101	886	770	2796	2476	2365	3164	2756	2476	2370	2725	896
1400	RL-RH	220	2252	2756	2476	2370	2725	2820	2476	2365	3160	1000	1865	1635	1365	1295	1243	1101	886	770	2820	2476	2365	3160	2756	2476	2370	2725	1337
_	VI	220	1758	2234	2113	2065	2425	2234	2113	2068	2602	936	1501	1186	1083	1061	1031	957	892	775	2234	2113	2068	2602	2234	2113	2065	2425	837
	VM	220	1655	2234	2113	2065	2425	2234	2113	2068	2602	936	1501	1186	1083	1061	1031	957	892	775	2234	2113	2068	2602	2234	2113	2065	2425	734
	GF-RM	220	2358	3068	2751	2630	3048	3118	2751	2660	3546	1120	2082	1824	1544	1470	1404	1245	1085	865	3118	2751	2660	3546	3068	2751	2630	3048	1228
_	GR	220	2215	3068	2751	2630	3048	3110	2751	2660	3540	1120	2076	1824	1544	1470	1404	1245	1085	865	3110	2751	2660	3540	3068	2751	2630	3048	1045
1600	RL-RH	220	2630	3068	2751	2630	3048	3130	2751	2660	3554	1120	2090	1836	1544	1470	1404	1245	1085	865	3130	2751	2660	3554	3068	2751	2630	3048	1460
•	VI	220	2031	2538	2395	2360	2761	2532	2395	2354	2960	1070	1712	1351	1242	1214	1187	1100	1129	865	2532	2395	2354	2960	2538	2395	2360	2761	668
	VM	220	1915	2538	2395	2360	2761	2514	2395	2354	2960	1070	1693	1350	1242	1214	1187	1100	1129	865	2514	2395	2354	2960	2538	2395	2360	2761	783
	GF-RM	250	2590	3400	3052	2850	3387	3470	3052	2950	3934	1250	2320	2031	1712	1630	1557	1386	1210	965	3470	3052	2950	3934	3400	3052	2850	3387	1337
_	GR	250	2285	3400	3052	2850	3394	3470	3052	2950	3940	1250	2325	2030	1712	1630	1557	1386	1210	965	3470	3052	2950	3940	3400	3052	2850	3394	1131
1800	RL-RH	250	2750	3400	3052	2850	3387	3480	3052	2950	3945	1250	2326	2039	1712	1630	1557	1386	1210	965	3480	3052	2950	3945	3400	3052	2850	3387	1597
-	VI	250	2113	2817	2677	2615	3106	2811	2677	2646	3320	1210	1924	1510	1400	1365	1328	1238	1146	965	2811	2677	2646	3320	2817	2677	2615	3106	896
	VM	250	1982	2817	2677	2615	3106	2800	2677	2646	3309	1210	1917	1498	1400	1365	1328	1238	1146	965	2800	2677	2646	3309	2817	2677	2615	3106	837
	GF-RM	250	2615	3770	3400	3250	3775	3875	3400	3280	4395	1400	2600	7772	1890	1810	1735	1555	1375	1065	3875	3400	3280	4395	3770	3400	3250	3775	1530
_	GR	250	2380	3770	3400	3250	3775	3870	3400	3280	4388	1400	2584	2267	1890	1810	1735	1555	1375	1065	3870	3400	3280	4388	3770	3400	3250	3775	1298
2000	RL-RH	250	2905	3770	3400	3250	3775	3881	3400	3280	4395	1400	2600	2277	1890	1810	1735	1555	1375	1065	3881	3400	3280	4395	3770	3400	3250	3775	1821
	VI	250	2210	3076	2910	2840	3380	3070	2910	2880	3625	1320	2110	1664	1525	1490	1445	1345	1246	1065	3070	2910	2880	3625	3076	2910	2840	3380	1115
	VM	250	2064	3076	2910	2840	3377	3070	2910	2880	3625	1320	2110	1664	1525	1490	1445	1345	1246	1065	3070	2910	2880	3625	3076	2910	2840	3377	696

Pour "H", consulter les dimensions d'encombrement en fonction de la rotation.

Pour les ventilateurs de grandes dimensions dont l'entretien doit être réalisé avec des frais limités et des arrêts de l'installation de courte durée, il est conseillé de prévoir la construction avec volute auto-soutenue et extraction côté transmission. Cette application particulière permet l'extraction complète du groupe turbine sans débrancher le ventilateur de l'installation à laquelle il est relié.

13.8. Ventilateur roue libre (Plug fan)

Unités de ventilation caractérisées par une absence de vis sans fin, destinées à être intégrées dans des systèmes où les espaces sont limités et où un ventilateur complet ne peut pas être installé.


Les fours, plénum, cabines et unités de traitement d'air sont quelques-unes des applications habituelles. Les rotors utilisés sont les mêmes que pour les ventilateurs standards, tandis que les performances dépendent du système dans lequel ils sont intégrés.

Les exécutions disponibles sont: 4 et 5 pour les ventilateurs directement accouplés, 9 pour les ventilateurs à transmission. Ils peuvent être fournis dans une configuration pour gaz chauds avec ventilateur de refroidissement, avec et sans panneau isolée, pour des températures de service dans la zone du rotor pouvant atteindre 300°C.

13.9. Conception pour applications lourdes

Pour les applications caractérisées par des pressions très élevées et des conditions de service particulièrement lourdes, des ventilateurs d'épaisseurs supérieures avec renforts structurels sont conçus et réalisés.

